翻訳と辞書
Words near each other
・ Hilda Kibet
・ Hilda Koronel
・ Hilda Kuper
・ Hilda Käkikoski
・ Hilda Lane
・ Hilda Lewis
・ Hilda Leyel
・ Hilda Lindley
・ Hilda Lindley House
・ Hilbert's nineteenth problem
・ Hilbert's ninth problem
・ Hilbert's Nullstellensatz
・ Hilbert's paradox of the Grand Hotel
・ Hilbert's problems
・ Hilbert's program
Hilbert's second problem
・ Hilbert's seventeenth problem
・ Hilbert's seventh problem
・ Hilbert's sixteenth problem
・ Hilbert's sixth problem
・ Hilbert's syzygy theorem
・ Hilbert's tenth problem
・ Hilbert's theorem
・ Hilbert's theorem (differential geometry)
・ Hilbert's Theorem 90
・ Hilbert's third problem
・ Hilbert's thirteenth problem
・ Hilbert's twelfth problem
・ Hilbert's twentieth problem
・ Hilbert's twenty-first problem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert's second problem : ウィキペディア英語版
Hilbert's second problem
In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that the arithmetic is consistent – free of any internal contradictions. Hilbert did not state exactly which axioms he considered for arithmetic, except that it was supposed to include the theory of real numbers (Kreisel, 1976).
In the 1930s, Kurt Gödel and Gerhard Gentzen proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.
== Hilbert's problem and its interpretation ==

In one English translation, Hilbert asks:

"When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science. ... But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results. In geometry, the proof of the compatibility of the axioms can be effected by constructing a suitable field of numbers, such that analogous relations between the numbers of this field correspond to the geometrical axioms. ... On the other hand a direct method is needed for the proof of the compatibility of the arithmetical axioms."〔From the English translation by M. Newson, 1902 provided by http://aleph0.clarku.edu/~djoyce/hilbert/problems.html .〕

As a nowadays common interpretation, a positive solution to Hilbert's second question would in particular provide a proof that Peano arithmetic is consistent.
There are many known proofs that Peano arithmetic is consistent that can be carried out in strong systems such as Zermelo-Fraenkel set theory. These do not provide a resolution to Hilbert's second question, however, because someone who doubts the consistency of Peano arithmetic is unlikely to accept the axioms of set theory (which is much stronger) to prove its consistency. Thus a satisfactory answer to Hilbert's problem must be carried out using principles that would be acceptable to someone who does not already believe PA is consistent. Such principles are often called finitistic because they are completely constructive and do not presuppose a completed infinity of natural numbers. Gödel's incompleteness theorem places a severe limit on how weak a finitistic system can be while still proving the consistency of Peano arithmetic.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert's second problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.